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ON THE PROPAGATION OF SMALL PERTURBATIONS IN TWO SIMPLE
AEROELASTIC SYSTEMS∗

ANGELO IOLLO† AND MANUEL D. SALAS‡

Abstract. In this paper we investigate the wave propagation patterns for two simple flow-structure
problems. We focus on the study of the propagation speeds of the waves in the fluid and in the structure, as
the rigidity of the structure and the Mach number of the undisturbed flow are changing. Some implications
concerning the sound emission by inhomogeneities eventually present in the structure are discussed.
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1. Introduction. The motivations for this study are twofold. On the one hand we wanted to study
the effects of the mean flow on the acoustic-waves speed, in the presence of a coupling with a structural
element bounding the fluid. On the other hand, since the energy of a perturbation is partitioned between
fluid and structure according to its speed, we were interested in investigating how the Mach number of the
undisturbed flow may affect the noise scattered at inhomogeneities by the structure.

In classical papers on aeroelastic interactions, the time evolution of small perturbations is studied [4].
The stability boundaries are determined as functions of a speed parameter (the ratio of the wave velocity
in the panel in absence of coupling and the wave length of the disturbance). It is also found that a panel
characterized elastically by flexural forces only is unstable at any finite airspeed for sufficiently large wave
lengths, whereas the introduction of membrane tension will lead to instability only for airspeeds grater than
to the minimum wave velocity of the panel. More recently the same problem was studied from another view
point, the interest being the scattering of a bending wave by an inhomogeneity in an otherwise homogeneous
and infinite panel immersed in a fluid at rest [3]. Given a certain frequency of the perturbation, the dispersion
relation of the coupled system is studied in terms of the wave number, whereas in the study of stability, a
frequency analysis was preferred in order to detect the eventual time-wise growth of the propagating wave.

The study of the dispersion relation for a homogeneous beam is a preliminary step in analyzing the
behavior of the air-beam system in the presence of inhomogeneities. In fact, the effect of gaps, stiffeners et
cetera, is accounted by the presence, in the right hand side of the beam equation, of a linear combination of
the Dirac function and its derivatives. The right hand side of the beam equation amounts to a forcing on
the system whose response is, in the Fourier space, the ratio between the Fourier transform of the forcing
term and the Fourier transform of the dispersion relation. Therefore, in the physical space, the solution is
governed by the poles of such ratio, which are in turn the zeros of the dispersion relation.

In what follows we first studied a simple one-dimensional configuration in which the Mach number plays
a role only on the stability bounds, while in the two-dimensional case the Mach number has an important
effect on the solution of the dispersion relation, allowing or not certain waves to appear. The one-dimensional
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case, however, has the merit of showing clearly the influence of the fluid-structure coupling on the speed of
the propagating waves. We may anticipate that for low values of the stiffness, the propagation speeds in the
beam and in the fluid are remarkably different from those in the uncoupled case.

2. Quasi One-Dimensional Coupling. We study the flow of a compressible fluid through a nozzle
with elastic walls. The nozzle walls are loaded by the pressure difference between an outside ambient pressure
and the local internal fluid pressure. The flow is assumed to be quasi one-dimensional, inviscid and isentropic.
Under these hypothesis the non-dimensional equations governing the flow are the following

2
γ − 1

ct + c ux +
2

γ − 1
cx u +

c

H
(Ht + u Hx) = 0(2.1)

ut + u ux +
2

γ − 1
c cx = 0(2.2)

where c is the local speed of sound, u is the velocity of the fluid, H the nozzle hight and γ the specific heats
ratio.

In addition, we assume that the deformation of the walls of the nozzle are so small that the motion is
governed by the linear beam equation

m Htt + D Hxxxx = pi − p0(2.3)

where D is the bending stiffness, pi the local pressure of the fluid, p0 is the outside ambient pressure and m

the linear mass of the walls that is 1 in what follows.
The coupling between the quasi one-dimensional fluid equation and the beam equation, which is due to

the pressure difference on the right hand side of eq. 2.3, is interesting because of the different nature of the
partial differential equations (PDEs) governing the fluid and the nozzle wall motion. If we consider only the
fluid, we have a hyperbolic system of PDEs representing signals that propagate on two characteristics with
speeds u± c. The perturbations are felt in the fluid only after a finite time, needed for the perturbation to
propagate from the source to the receiver. On the other hand, the linear beam equation is parabolic, i.e.,
perturbations are immediately felt all along the beam, although the phenomena is still evolving in time. In
fact, from the dispersion relation of this PDE we have two waves traveling with speeds ±√D k and two near
fields [1].

The coupled system is parabolic, but the traveling waves of each uncoupled system play an important
role for what concerns the stability of the solution and the partition of the energy of the perturbations
between the fluid and the nozzle walls.

Let us consider a nozzle with straight walls at t = 0 and with an inlet Mach number M0. We want to
study the evolution of small perturbations for this system. Take c = c0 + c′, u = u0 + u′ and H = H0 + H ′

and substitute in eqs. 2.1- 2.2 and 2.3. Assuming that p0 = ρ0 = 1, that the prime quantities are small, and
dropping the prime notation, we obtain the following system for the perturbations

2
γ − 1

ct + c0 ux +
2

γ − 1
u0 cx +

c0

H0
(Ht + u0 Hx) = 0(2.4)

ut + u0 ux +
2

γ − 1
c0 cx = 0(2.5)

Htt + D Hxxxx − 2
γ − 1

c0

(
c2
0

γ

) 1
γ−1

c = 0(2.6)

This system of PDEs governs the evolution of small disturbances in a nozzle with parallel elastic walls.
Assuming that the solution has the form

c = ĉ ei (k x−ωt)(2.7)
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u = û ei (k x−ωt)(2.8)

H = Ĥ ei (k x−ωt)(2.9)

we substitute in eqs. 2.4-2.6 to get

û =
2

γ − 1
c0 k

ω − u0 k
ĉ(2.10)

Ĥ =
2

γ − 1
c0

(
c2
0

γ

) 1
γ−1 ĉ

D k4 − ω2
(2.11)

(ω − u0 k)2
[
1 +

c2
0

H0 (D k4 − ω2)

(
c2
0

γ

) 1
γ−1
]
− c2

0 k2 = 0(2.12)

Note that as D → ∞ or k → ∞ the system becomes increasingly uncoupled, i.e., the evolution of the
perturbations in the beam are less and less influenced by the presence of the fluid and vice versa.

For given wave number k, we may solve eq. 2.12 with respect to ω. When Im(ω) 6= 0 the corresponding
mode of oscillation is unstable. Figure 2.1 shows a plot of Re(ω/k) with respect to D when M0 = 0. The
four solutions are obviously real and symmetric with respect to the abscissa. No unstable solution is possible
since there is no forcing on the system.
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Fig. 2.1. Solutions of the dispersion relation for a quasi one-dimensional coupling. c0 =
√

1.4, M0 = 0, k = π and

qr = Re(ω/k). The branches of the solution are named a, b, c, d from top to bottom.

The four solutions represent waves which travel in the positive and negative direction of the x-axis.
They correspond to the waves present in each of the uncoupled systems which have speeds ±c0 and ±√D k.
Solutions b and c go to 0 when the stiffness is zero (no wall separating the ambient and internal flow),
while the waves corresponding to solutions a and d have speeds equal to that of the signals in the fluid ±c0.
For increasing stiffness the solutions gradually shift role. For example, the solutions that are 0 for D = 0
asymptotically approach the value of ±c0 when the system becomes uncoupled, i.e., for D →∞. Conversely,
a and d approach the curves ω/k = ±√D k as D →∞.
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The partition of the energy of the perturbations between beam and fluid depends on the phase speed
ω/k, of the wave considered. It is seen from eq. 2.11 that for a given amplitude ĉ, if the speed of the wave
considered is close to ±√D k then Ĥ →∞. This means that when the speed of a wave in the coupled system
is close to the speed of a wave present, for example, in an isolated beam, the energy of the perturbation is
mainly concentrated in the beam. Similar arguments can be made for waves whose energy is mainly in the
fluid.

i)
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Fig. 2.2. Solutions of the dispersion relation for a quasi one-dimensional coupling. c0 =
√

1.4, M0 = 0.5, k = π i)

qr = Re(ω/k), ii) qr = Im(ω/k) . The branches of the solution are named a, b, c, d from top to bottom of figure i).

In fig. 2.2, we illustrate the case corresponding to M0 = 0.5. Now we find that there is a range of values
of D where Im(ω/k) 6= 0 for the solutions b and c. The existence of this region indicates that unstable motion
can be triggered by small disturbances with given wave number. Note that Im(ω/k) 6= 0 corresponds to the
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small region in fig. 2.2 where the branches b and c collapse into one curve, i.e., the speed of propagation
of the two waves is the same. This is necessarily the case since the dispersion relation is a fourth order
polynomial in ω. Note also that the solutions b and c have asymptotes c0 (0.5± 1.0).

Because the unstable modes are associated with the collapsed branches b and c, we can conclude that
their energy is mostly in the beam. Interestingly, there is a range of values for the stiffness for which the
unstable modes can propagate only in the positive direction.

2.1. Computational experiment. We considered a simply supported beam of unit length which is
in contact with a fluid at rest governed by eqs. 2.1-2.2 on one side, and to a constant ambient pressure
equal to that of the unperturbed fluid on the other side. We took a simply supported beam so that there
are no near fields generated at the boundaries [1]. The flow takes place between the elastic beam and a
rigid wall. This elastic “hose” connects two reservoirs whose pressure is kept constant and equal to that
of the unperturbed flow in the hose. Therefore, the boundary points are nodal points for the pressure and
displacement waves as well. When the beam is displaced from its equilibrium position it will perform free
periodic oscillations corresponding to a superposition of the modes excited by the initial condition. There is
no dissipative external force acting on the system and the system is conservative.

The beam equation was solved by mean of a semi-discretization based on a Galerkin projection of the
solution on the eigenmodes of an isolated simply supported beam. This results in the solution of a set of
ordinary differential equations (ODEs) for each mode taken into account. The ODEs are then integrated
in time by means of a standard fourth order Runge-Kutta scheme. Besides providing high resolution, this
approach allows us to control very closely the modes of the coupled system excited by the initial condition
which drives the system out of equilibrium. The given initial condition is the beam displacement. In
particular, we displace the beam so that only the first mode of oscillation has non-null amplitude, i.e.,
H(x, 0) = h sin π x with small h. Thus, we are able to impose the wave number of the free oscillations in
order to compare the frequencies resulting from the simulation with that computed by eq. 2.12. Other modes
of oscillation have amplitudes of much lower order compared to that excited.

The fluid equations are discretized by a finite-volume scheme where the fluxes at the volume interfaces
are computed as in [5]. Higher order accuracy is achieved by means of an ENO algorithm, see [2]. The
number of computational volumes used to discretize the flow equations is 1000, so that the accuracy of the
results is of the order of 10−6. The computations where run in double precision.

In fig. 2.3 we plot the Mach number at the inlet of the nozzle versus time. It is seen that two frequencies
of oscillation are present. Because of the set up of the experiment, the perturbation is not traveling, but
forming a standing wave in the nozzle (standing waves comprise traveling waves in both directions). The
two frequencies of fig. 2.1 are the ones found in this experiment. In particular it was verified that the periods
T = 2ω/π computed by eq. 2.12 with D = 0.001 (1.61,21.1) are to a good approximation equal to those
obtained with the numerical simulation (1.64,21.7).

3. Two-Dimensional Coupling. Let us consider a two-dimensional case in which the equation gov-
erning the flow is the linear potential equation

(
1−M2

0

)
Φxx + Φyy − 1

c2
0

(2 U0Φxt + Φtt) = 0(3.1)

where (Φx, Φy) = (u, v) are the components of the flow velocity vector, (U0, 0) and c0 are, respectively, the
velocity and speed of sound of the unperturbed flow, and M0 = U0/c0.
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Fig. 2.3. Mach number versus time at nozzle inlet. D = 0.001 and k = π.

Consider an infinitely long flexible surface separating two regions of the flow. On this surface the
boundary condition on the flow is given by the equation

Φy = Ht + U0 Hx(3.2)

where H is the distance of the flexible surface to the x-axis. In addition the potential Φ is required to vanish
in the far field.

In the idealized system that we want to study we assume that the infinite surface is elastic and satisfies
the linear small perturbation, beam equation

Htt + DHxxxx = [p] = 2ρ0 (Φt + U0 Φx)(3.3)

where ρ0 is the fluid density of the unperturbed flow and [p] is the pressure jump across the wall. For sim-
plicity, we are assuming that the flexible surface is wetted by the fluid on both sides. The case corresponding
to a flow at rest on one side leads to more complex algebraic manipulations, but the conclusions would not
be altered.

Equations 3.1-3.3 form a coupled system. The coupling comes about through the aerodynamic load on
the moving surface (beam) and the boundary condition, eq. 3.2.

We limit our study to such a linear model since we are interested in studying how the coupling affects
the propagation of small amplitude waves. To do that, we take

Φ = Φ̂ exp [i (k1x + k2y − ωt)](3.4)

H = Ĥ exp [i (k1x− ωt)](3.5)

and we substitute these expressions in eqs. 3.1-3.3. The angular velocity ω is supposed to be a real number.
Therefore, we consider waves whose amplitude are not diverging or decaying in time.
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Solving for k2 in eq. 3.1 we obtain

k2 =

√(
ω

c0
−M0 k1

)2

− k2
1(3.6)

Note that to have a finite amplitude wave for large y and to ensure the radiation condition, i.e., outgoing
waves in the far field, k2 is either a positive imaginary or a positive real:

k2 ∈ iR+ or k2 ∈ R+(3.7)

These conditions are a very important discriminant for admitting or not certain solutions and we will make
use of them later.

From eq. 3.2, we have

Φ̂ = −ω − U0 k1

k2
Ĥ(3.8)

and from eq. 3.3 we obtain

(D k4
1 − ω2) Ĥ = −2ρ0i(ω − U0 k1) Φ̂(3.9)

Substituting eqs. 3.6 and 3.8 into eq. 3.3, and making use of eqs. 3.4 and 3.5 we obtain the dispersion relation
for the coupled aeroelastic system.

The dispersion relation is nondimensionalized with respect to K0 = (ω2/D)1/4 which is the wave number
of the small perturbations traveling in the beam when there is no coupling with the fluid. Introducing also
k0 = ω/c0, µ = k0/K0, K = k1/K0 and ν = 2ρ0/K0, the dispersion relation is written

K4 − 1 =
i ν√

(µ−M0 K)2 −K2
(3.10)

The parameter µ has a physical meaning similar to that of the Mach number: it is the ratio between the
speed of the perturbations in the beam to that in air when there is no coupling.

This equation relates the wave numbers and the frequencies of the small amplitude waves which can
propagate in the coupled aeroelastic system. In the case of M0 = 0 the above equation reduces to

K4 − 1 =
ν√

K2 − µ2
(3.11)

which is identical to the dispersion relation obtained in [3], eq. 3.9, for a case with zero mean flow. Notice
that k2/K0 =

√
(µ−M0 K)2 −K2 which is the denominator of the right hand side of eq. 3.10.

Let us consider now the uncoupled system, where the beam vibration is not affecting the perturbations
in the fluid and vice versa. In this case, the nondimensional dispersion relation is

K4
b − 1 = 0(3.12)

with solutions

Kb = ±1,±i(3.13)

The solutions Kb = ±1 correspond to wave motion in the positive and negative directions of the x-axis. The
solutions Kb = ±i represent near fields generated close to some boundary, these are used to accommodate
the boundary conditions if present.
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In the fluid, the acoustic waves propagating in the x direction have speed ωf/kf = U0 ± c0, from which
we can compute the dimensionless wave number

Kf =
µ

M0 ± 1
(3.14)

If we assume that the solutions of the coupled system are not very far from those of the uncoupled
system eqs. 3.13 and 3.14, we can make eq. 3.10 approximately solvable in closed form. Consider first the
roots K ≈ ±1 and the case |µ±M0| < 1, after substituting in the right hand side of eq. 3.10 we have

K4 − 1 =
ν√

1− (µ∓M0)2
(3.15)

where we took into account the conditions 3.7. To the same order of approximation the solution of the above
equation can be written

K = 1 +
ν

4
√

1− (µ∓M0)2
(3.16)

Similarly |µ±M0| > 1, we have

K = 1 +
i ν

4
√

(µ∓M0)2 − 1
(3.17)

These waves are equivalent to the waves that in a isolated beam travel from −∞ to +∞ without attenuation.
In the coupled case, depending on µ ±M0, we have two different behaviors. For |µ±M0| < 1, the wave
number in the direction of x-axis is real, while k2/K0 ∈ iR+, i.e., the wave is decaying in the direction of
the y-axis, and therefore, since there is no energy radiated away, it propagates without attenuation in the
direction of the x-axis.

When |µ±M0| > 1, K has a non zero imaginary part. The wave number in the direction of the y-axis is
real, i.e., energy is radiated away from the vibrating beam and therefore the wave is decaying as it propagates
along the beam.

The equivalent of the near fields existing in the uncoupled beam are found when K ≈ ±i

K = ±i

(
1 +

i ν

4
√

(µ∓M0 i)2 + 1

)
(3.18)

which is valid for any value of µ±M0, therefore the type of solution found for the coupled aeroelastic system
is basically the same as for the near fields corresponding to M0 = 0.

The solutions corresponding to the acoustic waves are found rewriting eq. 3.10 as

√
(µ−M0 K)2 −K2 =

i ν

K4 − 1
(3.19)

then assuming K ≈ µ/(M0 ± 1), we have√
(µ−M0

µ

M0 ± 1
)2 −K2 =

i ν(
µ

M0±1

)4

− 1
(3.20)

The above equation has acceptable solutions, in the sense of the conditions 3.7, if and only if |µ/(M0 ± 1)| > 1
which is equivalent to |µ±M0| > 1. In this case the solutions are

K =
µ

M0 ± 1
+

ν

2
[
( µ

M0±1 )4 − 1
] M0 ± 1

µ[(1 −M2
0 ) + M0µ]

(3.21)
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which are real numbers and therefore the waves travel without attenuation. The correspondent wave number
in the direction of the y-axis is a pure imaginary, so there is no radiation of energy to infinity. These waves
are the equivalent of the acoustic waves in the fluid for the uncoupled system.

It should be noted that there are as many different kinds of waves as there are different systems interact-
ing, and that the particular wave with its velocity near that of one of the component systems will entrust its
energy chiefly to that component. This can be seen by substituting the solutions of the dispersion relations
into eq. 3.8, or eq. 3.9, and solving for the ratio of the amplitudes.

Compared to the case in which M0 = 0, there is a reacher variety of solutions available, according to
the inequality satisfied by µ ± M0. In fact depending on the direction we consider, we may have either
µ + M0 > 1 or −µ + M0 < 1. In this case for example, the last pair of solutions obtained would propagate
only in the positive direction of the x-axis.

This result is reasonable if we consider that what is important is the relative motion of the fluid with
respect to the waves traveling in the beam, in this sense, it is interesting to compare to the results in [3]
where a similar analysis is done for M0 = 0. In this case it is known that waves propagating in the beam in
the x direction radiate energy in the y direction only if the wave is supersonic, i.e., |µ| > 1. When M0 6= 0,
we take a frame of reference at rest with respect to the fluid. In the relative motion, the speed of the wave
in the beam is µ±M0.

Why these results are relevant to the noise emission from a rib stiffener? Intuitively it is clear that when
the wave energy is mostly into the fluid, very little energy is scattered at the stiffener, while if the wave
energy is mostly concentrated in the beam, the noise emission will be higher. This argument can be made
rigorous if we consider that the eigenvalues of the free aeroelastic system become the poles of the transfer
function for the forced system constituted by the fluid, the beam and the stiffener. The number and the
position of these poles in the complex plane now are function not only of µ but of M0 as well. Therefore the
emission of noise as a function of µ, as for example presented in [3], depends now on the free stream Mach
number.
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